

ı	ы	ιv.	15,	20	20	
J	u	y.	тэ,	20	20	

- To: Benjamin McPherson (NYSDEC)
- From: John Black (Inventum)
- CC: Jon Williams (Riverview); John Yensan (OSC); Craig Slater (CS Law); Todd Waldrop and James Edwards (Inventum)
- RE: Mixing Pad Dewatering IRM Work Plan Riverview Innovation & Technology Campus, Inc. Brownfield Cleanup Program Site No. C915353 Town of Tonawanda, New York

Inventum Engineering, P.C. (Inventum), on behalf of Riverview Innovation & Technology Campus, Inc. (Riverview), is submitting this Mixing Pad Dewatering IRM Work Plan (Mixing Pad Water IRM) to the New York State Department of Environmental Conservation (NYSDEC) for the Riverview Brownfield Cleanup Program (BCP) Site (#C915353) located at 3875 River Road, Tonawanda, New York.

Summary and Background

The mixing pad at the property (Grids AE23 to AF24, Figure 2) was used by the Tonawanda Coke Corporation for blending Tar Decanter Sludge (Listed Waste K087 if not recycled) with coal and coke breeze prior to the blended product being charged to the battery for coke production. The mixing pad is inspected weekly and the storm water observed on May 1, 2020 was approaching the limits of the desired freeboard. The warm weather has evaporated a significant amount of the water and the June 17, 2020 inspection (photograph taken the following day) showed significantly less water.

> 481 Carlisle Drive Suite 202 Herndon, Virginia 20170

Mixing Pad, May 2020 View Looking Down and toward the East

Mixing Pad, June 18, 2020 View Looking Down and Toward the East

Background

The concrete walled mixing pad has accumulated water from inflow and direct precipitation. The surface water flow into the mixing pad has been redirected, but the pad continues to be exposed to precipitation.

The mixing pad has been covered with water since acquisition by Riverview, but the water is clear and solid material is visible in the containment. Prior to being able to decontaminate this area, stormwater contained within the mixing pad is proposed to be managed as a K087 listed waste. This water will be treated using granular activated carbon prior to discharge in accordance with existing permits that allow for discharge of treated stormwater from diked/bermed areas. After dewatering, the mixing pad will be

inspected and the solid materials in the mixing pad will be consolidated and placed in drums or lined roll off containers (number depending on volume). After the loose solid materials are removed from the structure, the surface will be decontaminated by scraping and either power or dry ice washing.

There was an estimated 35,000- to 45,000-gallons of water in the mixing pad. (average depth of 36 inches over 1,500 square feet). While the water in the containment is from precipitation and not a process, the debris, rubble, and other materials in the mixing pad are in contact with the accumulated water and no records¹ of the mixing pad having been decontaminated are available. TCC was allowed under a Beneficial Use Determination (BUD) to place breeze used to clean up petroleum spills on the Mixing Pad. This material was blended with coal/ decanter sludge and charged to the coke ovens. The material, if any, contained in the former mixing pad may meet the definition of a K087 listed hazardous waste under 6NYCRR Part 371 and 40 CFR §261.32.

The liquid materials within the mixing pad will be treated and discharged to the Town of Tonawanda sewer system in accordance with Riverview's existing permit (Industrial Sewer Connection Permit No. 331) until the solids are removed and the concrete is decontaminated. Surface water after sampling and decontamination will be managed in accordance with an approved BCP Site SWPPP.

Scope of Work

Community Air Monitoring

In addition to the perimeter air monitoring program, VOCs and dust will be monitored during all active operations on the mixing pad. The activity specific Air Monitoring Station will be located as shown on Figure 2. VOC and Dust concentrations will be recorded and reported (Daily values reported weekly) during active management operations.

Dewatering

The water in the mixing pad is not located near a sewer inlet that would allow direct discharge to the POTW. The water was tested for the POTW parameters (See Attachment A) and complies with the discharge limits as it exists.

¹ There are no records, but site personnel believe the pad was decontaminated during the shutdown process. No records or confirmatory sampling data are available and therefore it will be managed as though no, or incomplete, decontamination was conducted.

Analyte	Units	Town of Tonawanda Industrial Pre- Treatment Permit No. 331 Limits	Mixing Pad Sample (1/31/2020)
рН	SU	5.0 - 9.5	
SGT-HEM	ррт	100	NS
Total Cyanide	mg/L	1.1	< 0.01
Biochemical Oxygen			
Demand	mg/L	250	NS
Total Suspended Solids	mg/L	250	3.8
Total Phosphorus	mg/L	6	NS
Total Mercury	mg/L	0.001	<0.000200
Total Arsenic	mg/L	0.5	<0.01
Total Selenium	mg/L	N/A	<0.02
Total Recoverable Phenolics	mg/L	N/A	NS
Priority Pollutant PAH's			
(625)	mg/L	N/A	NS
Total Ammonia	mg/L	N/A	NS
Priority Pollutant SVOCs			
and Metals	mg/L	N/A	Note 1

Bold Red text indicates analyte from grab samples is greater than monthly permit limit. N/A = Not Applicable. Monitoring Only

NS = Not sampled.

Note 1 - PP SVOCs and PP Metals were sampled on 1/31/2020 but are not reported in this table. Iron and Manganese were detected (Iron 0.279 mg/L and Manganese).0158 mg/L). No SVOCs were detected.

The water will be pumped from the secondary containment, through a series of bag filters, a nominal 2,000-pound granular activated carbon treatment unit and discharged to the Town of Tonawanda POTW Outfall (Figure 1). The filter housings and carbon vessel will be decontaminated prior to shipment to the site or first use. All bag filters will be new. The carbon will be regenerated or new granulated activated carbon. No previously used un-regenerated GAC will be transported to the site. The discharge will be accomplished by pumping the <u>treated</u> water through a dedicated hose and discharged directly to the POTW outfall (Figures 1 and 2). The hose will be inspected daily following the procedures listed below:

- Prior to startup each day, walk the line and inspect for any damage that may have occurred overnight;
- Prior to startup check all couplings to make sure they are secure;
- Verify the discharge is within the POTW Outfall drop inlet;
- Start pumping;
- Walk the line within 1 hour after starting the pump(s) to ensure no significant leakage is occurring;
- At the end of the day, if temperatures are forecast to be below freezing, make sure the pump and discharge line can drain.

The treatment unit and suction hoses will remain at the mixing pad until the confirmation samples show the surfaces no longer allow constituents of concern to impact precipitation falling on the pad. After the NYSDEC determines that the surface water from the mixing pad can be managed under the SWPPP, the hoses, piping, pumps, and filter housing used to empty the mixing pad (all equipment upstream of the GAC) will be decontaminated by flushing with potable water. During flushing the water will be treated through the GAC and discharged to the POTW. After three full cycles of rinsate (Based on the combined storage volume of the equipment, but no less than 3,000 gallons per cycle), a sample of water pumped through the system will be collected and analyzed for VOCs and SVOCs. After a sample that meets the POTW discharge criteria without GAC treatment the equipment will be considered suitable for reuse on the property. The GAC unit, unless the carbon is spent, will be reused on the property. The activated carbon in the unit will be shipped for recycling before the GAC unit is decontaminated and moved from the property, but the partially used activated carbon can be used elsewhere on the property.

Solids Screening and Sampling

After the water has been removed, samples of residual solids in the mixing pad will be collected. Representative solids (Marked with "MPS") will collected those locations in the mixing pad that represent the range of solid residuals left in the mixing pad. Headspace screening of the solids will be conducted with a PID equipped with a 10.6 eV lamp.

Solid samples for headspace screening will be collected using shovels or stainless-steel spoons. The spoons and shovels will be decontaminated prior to and after the sampling with an Alconox wash and a distilled water rinse. This decontamination water will be discharged to the Town of Tonawanda sewer system in accordance with Riverview's existing permit (Industrial Sewer Connection Permit No. 331).

Samples for laboratory analysis will be collected from the locations with the highest PID, olfactory and visual indication of organic compounds.

Laboratory Analysis

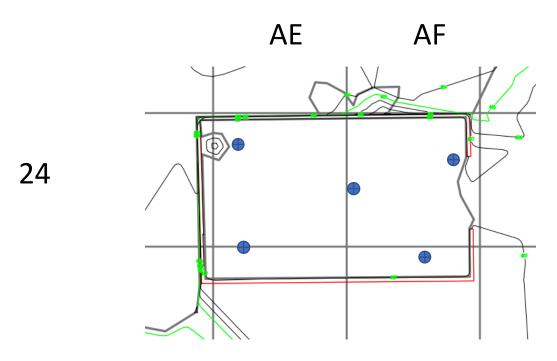
Solid and concrete sample(s) will be tested to characterize the material and to obtain a waste profile. Laboratory reporting will include a NYSDEC Category A deliverable and an EDD.

- Characterization
 - Toxicity Characteristic Leaching Procedure (TCLP) using EPA Method 1311 for:
 - Semi-Volatile Organic Compounds (SVOCs) using EPA Method 8270D
 - VOCs using EPA Method 8260C
 - Resource Conversation and Recovery Act (RCRA) Metals using EPA Method 6010C
 - Mercury using EPA Method 7470A
 - Pesticides using EPA Method 8081B
 - Herbicides using EPA Method 8151A
 - Volatile Organic Compounds, including xylenes
 - Semi-volatile Organic Compounds
 - o Metals
 - Polychlorinated Biphenyls (PCBs) using EPA Method 8082A
 - Flash Point using EPA Method 1010A

- pH using EPA Method 9045D
- Reactivity, Cyanide using EPA Method 7.3.4.2 reference
- Reactivity, Sulfide using EPA Method 7.3.4.3 reference

Solids Management

Following dewatering, any residual solids in the mixing pad perimeter will be inspected. If uniform in appearance, all solids will be removed (to a "broom clean" state and will be placed in drums or lined roll off containers. Drums will be staged on polyethylene sheeting and each drum will be closed and labeled after filling. Roll off containers will be double lined and covered. If more than one material, based on visual observations, is present, they will be segregated in separate lined roll off containers or opentopped drums (depending on volume). The containers will be labeled hazardous waste (K087) pending analysis.


The solids will be sampled to determine if they exhibit the characteristics of hazardous waste and if they contain the constituents of K087. If the solids exhibit the characteristics of hazardous waste or contain the constituents of K087 the materials will be transported offsite and disposed as hazardous waste. If the materials do not contain the constituents of K087 or the characteristics of hazardous waste, they will be shipped offsite for non-hazardous waste disposal.

Decontamination

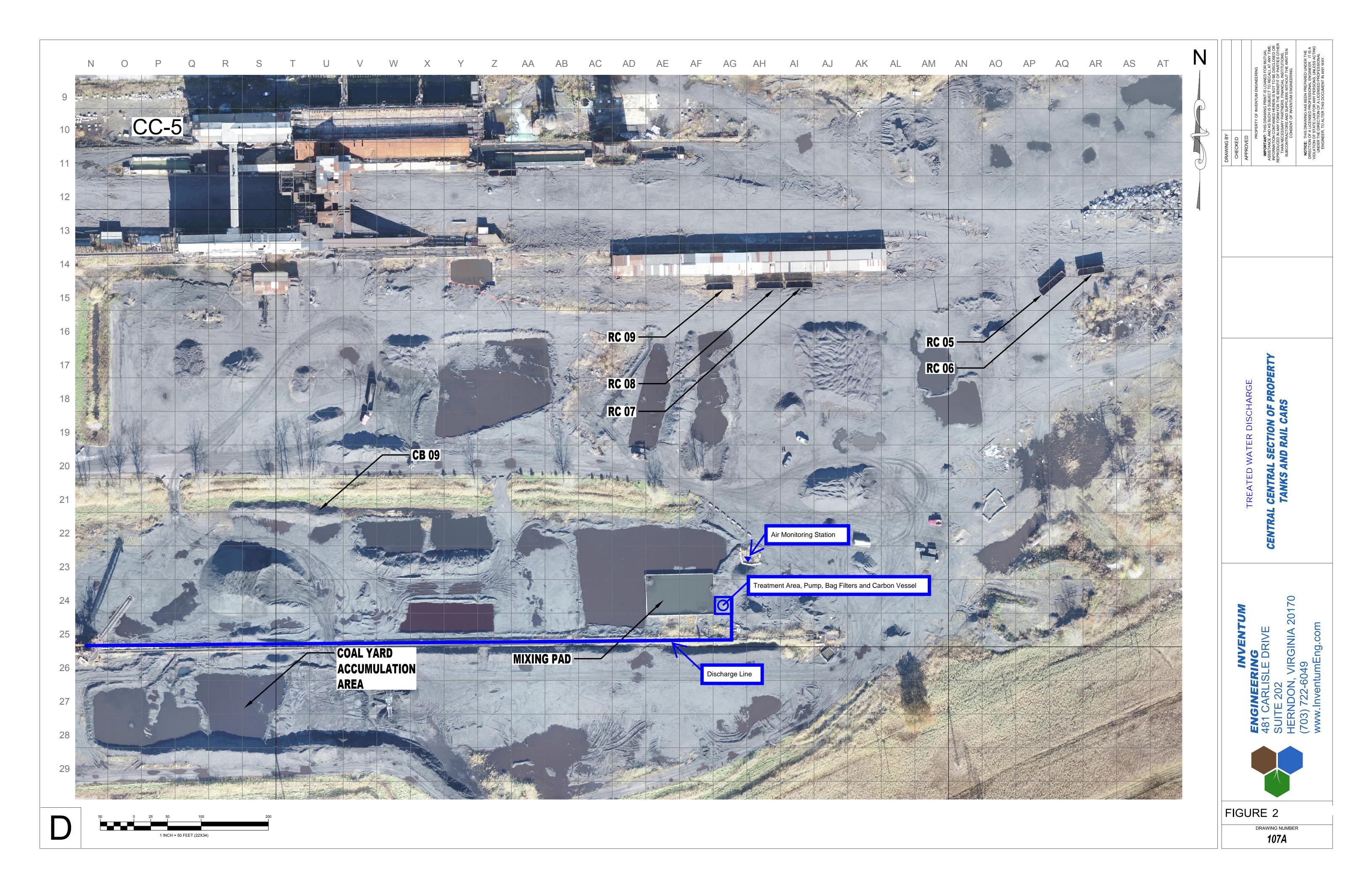
The mixing pad will be decontaminated to remove any residual and solid materials adhered to the surfaces. The decontamination procedure will include:

- Detailed mapping of the interior slab and walls. All cracks or defects will be noted on a scale drawing of the pad;
- Inspect the perimeter of the mixing pad to identify any tar that may have been released from the unit;
- Power wash (water and or dry ice) the entire interior surface of the pad to remove all loose materials. All wash water will be treated through the bag filters and carbon and discharged to the sewer;
- Sampling the surface by coring five locations (in a die pattern biased to staining) of the concrete and analyzing the top 1-inch and the mid-depth of each core for hazardous characteristics analysis. All sample locations will be resealed with epoxy grout. The pattern will be based on field observations, but will resemble:

Recommendations

The following recommendations are proposed:

- 1. The liquids in the mixing pad are primarily surface water but will be managed as K087 hazardous waste until treated with GAC and discharged to the POTW under Permit No. 331. This water will be pumped through a carbon vessel into a hose system discharging to the POTW outfall.
- 2. After pumping the free water to the POTW outfall, the solids in, and the visible surfaces of, the mixing pad will be inspected.
- 3. Samples of the material will be field screened for the presence of odor, liquid materials, and with a PID.
- 4. The solid materials will be removed from the mixing pad and placed in a lined roll off container or 55-gallon drums.
- 5. Representative sample(s) of the solid materials in the mixing pad will be submitted to a certified laboratory for characterization.
- 6. The walls and visible slab will be inspected for cracks or signs of deterioration.
- 7. A detailed, scale drawing of the mixing pad and any cracks or deterioration will be prepared.
- 8. The perimeter of the mixing pad will be inspected to note any tar material that may have been released from the mixing pad;
- 9. The surface of the mixing pad will be decontaminated with a power washer or dry ice blasting. All wash water will be treated prior to discharge to the POTW.
- 10. The concrete will be cored to determine the characteristics of the surface of the pad and the character of the bulk concrete. All core holes will be repaired with epoxy grout.
- 11. Following receipt of the mixing pad solids sample results, the material will be transported offsite for proper disposal.


12. Following receipt of the concrete core sample results a determination on the effectiveness of the decontamination will be made. The data and interpretation will be submitted to the NYSDEC for review.

Figures

JULY 15, 2020

Attachment A Laboratory Report

Analytical Report For

Inventum Engineering, P.C.

For Lab Project ID

200501

Referencing

Riverview

Prepared

Monday, February 10, 2020

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or `` documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client:	<u>Inventum Engineering, P.C.</u>		
Project Reference:	Riverview		
Sample Identifier:	Outfall 2-01312020		
Lab Sample ID:	200501-01	Date Sampled:	1/31/2020
Matrix:	Aq Liquid	Date Received:	2/3/2020

Mercury

Thallium

Zinc

Analyte Mercury	<u>Result</u> < 0.000200	Units mg/L	Qualifier	Date Analyzed 2/7/2020 11:05
Method Reference(s): Preparation Date: Data File:	EPA 7470A 2/6/2020 Hg200207A			
Priority Pollutant Metals	<u>s (ICP)</u>			
<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.100	mg/L		2/6/2020 10:33
Antimony	< 0.0600	mg/L		2/4/2020 20:23
Arsenic	< 0.0100	mg/L		2/6/2020 10:33
Beryllium	< 0.00500	mg/L		2/4/2020 20:23
Cadmium	< 0.00500	mg/L		2/4/2020 20:23
Chromium	< 0.0100	mg/L		2/4/2020 20:23
Copper	< 0.0400	mg/L		2/4/2020 20:23
Iron	0.457	mg/L		2/6/2020 10:33
Lead	< 0.0100	mg/L		2/4/2020 20:23
Manganese	0.184	mg/L		2/4/2020 20:23
Nickel	< 0.0400	mg/L		2/4/2020 20:23
Selenium	< 0.0200	mg/L		2/6/2020 10:33
Silver	< 0.0100	mg/L		2/4/2020 20:23

mg/L

mg/L

<u>Semi-Volatile Organics (Acid/Base Neutrals)</u>					
Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed	
1,1-Biphenyl	< 10.0	ug/L		2/4/2020 14:29	

< 0.0250

< 0.0600

EPA 6010C EPA 3005A

2/3/2020

200206A

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Method Reference(s):

Preparation Date:

Data File:

2/4/2020 20:23

2/4/2020 20:23

Client:	Inventum Engineering, P.C.						
Project Reference:	Riverview						
Sample Identifier:	Outfall 2-01	312020					
Lab Sample ID:	200501-01			Date Sampled:	1/31/2020		
Matrix:	Aq Liquid			Date Received:	2/3/2020		
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		2/4/2020 14:29		
1,2,4-Trichlorobenzei	ne	< 10.0	ug/L		2/4/2020 14:29		
1,2-Dichlorobenzene		< 10.0	ug/L		2/4/2020 14:29		
1,3-Dichlorobenzene		< 10.0	ug/L		2/4/2020 14:29		
1,4-Dichlorobenzene		< 10.0	ug/L		2/4/2020 14:29		
2,2-Oxybis (1-chlorop	propane)	< 10.0	ug/L		2/4/2020 14:29		
2,3,4,6-Tetrachloroph	nenol	< 10.0	ug/L		2/4/2020 14:29		
2,4,5-Trichloropheno	1	< 10.0	ug/L		2/4/2020 14:29		
2,4,6-Trichloropheno	1	< 20.0	ug/L		2/4/2020 14:29		
2,4-Dichlorophenol		< 10.0	ug/L		2/4/2020 14:29		
2,4-Dimethylphenol		< 10.0	ug/L		2/4/2020 14:29		
2,4-Dinitrophenol		< 20.0	ug/L		2/4/2020 14:29		
2,4-Dinitrotoluene		< 10.0	ug/L		2/4/2020 14:29		
2,6-Dinitrotoluene		< 10.0	ug/L		2/4/2020 14:29		
2-Chloronaphthalene		< 10.0	ug/L		2/4/2020 14:29		
2-Chlorophenol		< 10.0	ug/L		2/4/2020 14:29		
2-Methylnapthalene		< 10.0	ug/L		2/4/2020 14:29		
2-Methylphenol		< 10.0	ug/L		2/4/2020 14:29		
2-Nitroaniline		< 20.0	ug/L		2/4/2020 14:29		
2-Nitrophenol		< 10.0	ug/L		2/4/2020 14:29		
3&4-Methylphenol		< 10.0	ug/L		2/4/2020 14:29		
3,3'-Dichlorobenzidin	ie	< 10.0	ug/L		2/4/2020 14:29		
3-Nitroaniline		< 20.0	ug/L		2/4/2020 14:29		
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		2/4/2020 14:29		
4-Bromophenyl phen	yl ether	< 10.0	ug/L		2/4/2020 14:29		
4-Chloro-3-methylph	enol	< 10.0	ug/L		2/4/2020 14:29		
4-Chloroaniline		< 10.0	ug/L		2/4/2020 14:29		
4-Chlorophenyl pheny	yl ether	< 10.0	ug/L		2/4/2020 14:29		
4-Nitroaniline		< 20.0	ug/L		2/4/2020 14:29		
4-Nitrophenol		< 20.0	ug/L		2/4/2020 14:29		

Client:	Inventum Engineering, P.C.						
Project Reference:	Riverview						
Sample Identifier:	Outfall 2-013	312020					
Lab Sample ID:	200501-01			Date Sampled:	1/31/2020		
Matrix:	Aq Liquid			Date Received:	2/3/2020		
Acenaphthene		< 10.0	ug/L		2/4/2020	14:29	
Acenaphthylene		< 10.0	ug/L		2/4/2020	14:29	
Acetophenone		< 10.0	ug/L		2/4/2020	14:29	
Anthracene		< 10.0	ug/L		2/4/2020	14:29	
Atrazine		< 10.0	ug/L		2/4/2020	14:29	
Benzaldehyde		< 10.0	ug/L		2/4/2020	14:29	
Benzo (a) anthracene		< 10.0	ug/L		2/4/2020	14:29	
Benzo (a) pyrene		< 10.0	ug/L		2/4/2020	14:29	
Benzo (b) fluoranthen	e	< 10.0	ug/L		2/4/2020	14:29	
Benzo (g,h,i) perylene		< 10.0	ug/L		2/4/2020	14:29	
Benzo (k) fluoranthen	e	< 10.0	ug/L		2/4/2020	14:29	
Bis (2-chloroethoxy) n	nethane	< 10.0	ug/L		2/4/2020	14:29	
Bis (2-chloroethyl) eth	ier	< 10.0	ug/L		2/4/2020	14:29	
Bis (2-ethylhexyl) phtl	halate	< 10.0	ug/L		2/4/2020	14:29	
Butylbenzylphthalate		< 10.0	ug/L		2/4/2020	14:29	
Caprolactam		< 10.0	ug/L		2/4/2020	14:29	
Carbazole		< 10.0	ug/L		2/4/2020	14:29	
Chrysene		< 10.0	ug/L		2/4/2020	14:29	
Dibenz (a,h) anthracer	ne	< 10.0	ug/L		2/4/2020	14:29	
Dibenzofuran		< 10.0	ug/L		2/4/2020	14:29	
Diethyl phthalate		< 10.0	ug/L		2/4/2020	14:29	
Dimethyl phthalate		< 20.0	ug/L		2/4/2020	14:29	
Di-n-butyl phthalate		< 10.0	ug/L		2/4/2020	14:29	
Di-n-octylphthalate		< 10.0	ug/L		2/4/2020	14:29	
Fluoranthene		< 10.0	ug/L		2/4/2020	14:29	
Fluorene		< 10.0	ug/L		2/4/2020	14:29	
Hexachlorobenzene		< 10.0	ug/L		2/4/2020	14:29	
Hexachlorobutadiene		< 10.0	ug/L		2/4/2020	14:29	
Hexachlorocyclopenta	diene	< 10.0	ug/L		2/4/2020	14:29	
Hexachloroethane		< 10.0	ug/L		2/4/2020	14:29	

Client:	Inventum Engineering, P.C.						
Project Reference:	Riverv	iew					
Sample Identifier:	Outfa	ll 2-01312020					
Lab Sample ID:	2005	01-01		Dat	e Sampled:	1/31/2020	
Matrix:	Aq Lie	quid		Dat	e Received:	2/3/2020	
Indeno (1,2,3-cd) pyre	ene	< 10.0	ug/L			2/4/2020	14:29
Isophorone		< 10.0	ug/L			2/4/2020	14:29
Naphthalene		< 10.0	ug/L			2/4/2020	14:29
Nitrobenzene		< 10.0	ug/L			2/4/2020	14:29
N-Nitroso-di-n-propyl	amine	< 10.0	ug/L			2/4/2020	14:29
N-Nitrosodiphenylami	ne	< 10.0	ug/L			2/4/2020	14:29
Pentachlorophenol		< 20.0	ug/L			2/4/2020	14:29
Phenanthrene		< 10.0	ug/L			2/4/2020	14:29
Phenol		< 10.0	ug/L			2/4/2020	14:29
Pyrene		< 10.0	ug/L			2/4/2020	14:29
<u>Surrogate</u>		Per	<u>cent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol			75.5	59.6 - 114		2/4/2020	14:29
2-Fluorobiphenyl			56.4	36.2 - 99.1		2/4/2020	14:29
2-Fluorophenol			35.0	14.9 - 105		2/4/2020	14:29
Nitrobenzene-d5			68.1	53.7 - 102		2/4/2020	14:29
Phenol-d5			25.2	10 - 106		2/4/2020	14:29
Terphenyl-d14			79.7	58.7 - 116		2/4/2020	14:29
Method Referen	ce(s):	EPA 8270D					
Preparation Dat Data File:	æ:	EPA 3510C 2/4/2020 B44291.D					
<u>Total Suspended S</u>	<u>Solids</u>						
<u>Analyte</u>		Result	<u>Units</u>		Qualifier	Date Anal	yzed
Solids, Suspended		5.0	mg/L			2/3/2020	
Method Referen Subcontractor E		SM 2540 D 11148					
<u>Total Cyanide</u>							
<u>Analyte</u>		Result	<u>Units</u>		<u>Qualifier</u>	Date Anal	<u>yzed</u>
Cyanide, Total		0.0134	mg/L			2/5/2020	

Client:	<u>Inventum Engineering, P.C.</u>		
Project Reference:	Riverview		
Sample Identifier:	Outfall 2-01312020		
Lab Sample ID:	200501-01	Date Sampled:	1/31/2020
Matrix:	Aq Liquid	Date Received:	2/3/2020
-			

Method Reference(s):	SM 4500 CN E - 2011
	SM 4500 CN C - 2011
Preparation Date:	2/5/2020

Client:	<u>Inventum Engineering, P.C.</u>		
Project Reference:	Riverview		
Sample Identifier:	Settling Pond-01/31/2020		
Lab Sample ID:	200501-02	Date Sampled:	1/31/2020
Matrix:	Aq Liquid	Date Received:	2/3/2020

Mercury

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	9	Qualifier	Date Analyzed
Mercury	< 0.000200	mg/L			2/7/2020 11:11
Method Reference(s):	EPA 7470A				
Preparation Date:	2/6/2020				
Data File:	Hg200207A				
	()				

Priority Pollutant Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	1.14	mg/L		2/6/2020 10:46
Antimony	< 0.0600	mg/L		2/4/2020 20:37
Arsenic	< 0.0100	mg/L		2/6/2020 10:46
Beryllium	< 0.00500	mg/L		2/4/2020 20:37
Cadmium	< 0.00500	mg/L		2/4/2020 20:37
Chromium	< 0.0100	mg/L		2/4/2020 20:37
Copper	< 0.0400	mg/L		2/4/2020 20:37
Iron	2.73	mg/L		2/6/2020 10:46
Lead	< 0.0100	mg/L		2/4/2020 20:37
Manganese	1.38	mg/L		2/4/2020 20:37
Nickel	< 0.0400	mg/L		2/4/2020 20:37
Selenium	0.0278	mg/L		2/6/2020 10:46
Silver	< 0.0100	mg/L		2/4/2020 20:37
Thallium	< 0.0250	mg/L		2/4/2020 20:37
Zinc	0.105	mg/L		2/4/2020 20:37
Method Reference(s): Preparation Date: Data File:	EPA 6010C EPA 3005A 2/3/2020 200206A	,		
<u>Semi-Volatile Organics</u>	<u>[Aciu/Buse Neutrais]</u>	L		
Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed

Analyte	<u>Result</u>	Units	Quaimer	Date Analyzeu
1,1-Biphenyl	< 10.0	ug/L		2/4/2020 14:58

Client:	Inventum	<u>Engineering,</u>	<u>P.C.</u>		
Project Reference:	Riverview				
Sample Identifier:	Settling F	Pond-01/31/20)20		
Lab Sample ID:	200501-0	02		Date Sampled:	1/31/2020
Matrix:	Aq Liquio	đ		Date Received:	2/3/2020
1,2,4,5-Tetrachlorob	enzene	< 10.0	ug/L		2/4/2020 14:58
1,2,4-Trichlorobenze		< 10.0	ug/L		2/4/2020 14:58
1,2-Dichlorobenzene		< 10.0	ug/L		2/4/2020 14:58
1,3-Dichlorobenzene		< 10.0	ug/L		2/4/2020 14:58
1,4-Dichlorobenzene		< 10.0	ug/L		2/4/2020 14:58
2,2-0xybis (1-chloro		< 10.0	ug/L		2/4/2020 14:58
2,3,4,6-Tetrachlorop		< 10.0	ug/L		2/4/2020 14:58
2,4,5-Trichloropheno		< 10.0	ug/L		2/4/2020 14:58
2,4,6-Trichlorophenc		< 20.0	ug/L		2/4/2020 14:58
2,4-Dichlorophenol		< 10.0	ug/L		2/4/2020 14:58
2,4-Dimethylphenol		< 10.0	ug/L		2/4/2020 14:58
2,4-Dinitrophenol		< 20.0	ug/L		2/4/2020 14:58
2,4-Dinitrotoluene		< 10.0	ug/L		2/4/2020 14:58
2,6-Dinitrotoluene		< 10.0	ug/L		2/4/2020 14:58
2-Chloronaphthalene	2	< 10.0	ug/L		2/4/2020 14:58
2-Chlorophenol		< 10.0	ug/L		2/4/2020 14:58
2-Methylnapthalene		< 10.0	ug/L		2/4/2020 14:58
2-Methylphenol		< 10.0	ug/L		2/4/2020 14:58
2-Nitroaniline		< 20.0	ug/L		2/4/2020 14:58
2-Nitrophenol		< 10.0	ug/L		2/4/2020 14:58
3&4-Methylphenol		< 10.0	ug/L		2/4/2020 14:58
3,3'-Dichlorobenzidii	ne	< 10.0	ug/L		2/4/2020 14:58
3-Nitroaniline		< 20.0	ug/L		2/4/2020 14:58
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		2/4/2020 14:58
4-Bromophenyl pher	ıyl ether	< 10.0	ug/L		2/4/2020 14:58
4-Chloro-3-methylph	ienol	< 10.0	ug/L		2/4/2020 14:58
4-Chloroaniline		< 10.0	ug/L		2/4/2020 14:58
4-Chlorophenyl phen	yl ether	< 10.0	ug/L		2/4/2020 14:58
4-Nitroaniline		< 20.0	ug/L		2/4/2020 14:58
4-Nitrophenol		< 20.0	ug/L		2/4/2020 14:58

Project Reference: Riverview Sample Identifier: Settling Pond-01/31/2020 Lab Sample ID: 200501-02 Date Sampled: 1/31/2020 Matrix: Aq Liquid Date Received: 2/3/2020 Acenaphthene < 10.0	Client:	<u>Inventum En</u>	igineering,	<u>P.C.</u>		
Lab Sample ID: 200501-02 Date Samplet: 1/31/2020 Matrix: Aq Liquid Date Received: 2/3/2020 Accnaphthylene <10.0	Project Reference:	Riverview				
Matrix: Aq Liquid Date Received: $2/3/2020$ Acenaphthere <10.0 ug/L $2/4/2020$ 14:58 Acenaphthylene <10.0 ug/L $2/4/2020$ 14:58 Acetophenone <10.0 ug/L $2/4/2020$ 14:58 Actophenone <10.0 ug/L $2/4/2020$ 14:58 Antrazine <10.0 ug/L $2/4/2020$ 14:58 Benzaldehyde <10.0 ug/L $2/4/2020$ 14:58 Benzo (a) anthracene <10.0 ug/L $2/4/2020$ 14:58 Benzo (a) anthracene <10.0 ug/L $2/4/2020$ 14:58 Benzo (b) fluoranthene <10.0 ug/L $2/4/2020$ 14:58 Benzo (b, fluoranthene <10.0 ug/L $2/4/2020$ 14:58 Bis (2-chloroethys) methane <10.0 ug/L $2/4/2020$ 14:58 Bis (2-chloroethys) methane <10.0 ug/L $2/4/2020$ 14:58 Bis (2-chloroethys) methane <10.0 ug/L <	Sample Identifier:	Settling Pon	d-01/31/20)20		
Acenaphthene < 10.0	Lab Sample ID:	200501-02			Date Sampled:	1/31/2020
Aceaphthylene <10.0 ug/L 2/4/202 14:58 Acetophenone <10.0 ug/L 2/4/202 14:58 Anthracene <10.0 ug/L 2/4/202 14:58 Antrazine <10.0 ug/L 2/4/202 14:58 Atrazine <10.0 ug/L 2/4/202 14:58 Benzo (a) anthracene <10.0 ug/L 2/4/202 14:58 Benzo (a) anthracene <10.0 ug/L 2/4/202 14:58 Benzo (b) fluoranthene <10.0 ug/L 2/4/202 14:58 Benzo (b) fluoranthene <10.0 ug/L 2/4/202 14:58 Benzo (c) fluoranthene <10.0 ug/L 2/4/202 14:58 Benzo (a) prene <10.0 ug/L 2/4/202 14:58 Bis (2-chloroethoxy) methane <10.0 ug/L 2/4/202 14:58 Bis (2-chloroethyl) phthalate <10.0 ug/L 2/4/202 14:58 Butylbenzylphthalate <10.0 ug/L 2/4/202 14:58 Dibenz (a,h) anthracene <10.0 ug/L 2/4/2	Matrix:	Aq Liquid			Date Received:	2/3/2020
Aceaphthylene <10.0						
Acetophenone <10.0	_					
Anthracene < 10.0				ug/L		
Atrazine < 10.0	-			ug/L		2/4/2020 14:58
Benzaldehyde < 10.0	Anthracene		< 10.0	ug/L		2/4/2020 14:58
Benzo (a) anthracene 10.0 ug/L 2/4/2020 14:58 Benzo (a) pyrene 10.0 ug/L 2/4/2020 14:58 Benzo (b) fluoranthene 10.0 ug/L 2/4/2020 14:58 Benzo (g,h,i) perylene <10.0	Atrazine		< 10.0	ug/L		2/4/2020 14:58
Benzo (a) pyrene <10.0	Benzaldehyde		< 10.0	ug/L		2/4/2020 14:58
Berzo (b) fluoranthene < 10.0	Benzo (a) anthracene		< 10.0	ug/L		2/4/2020 14:58
Benzo (g,h,i) perylene < 10.0	Benzo (a) pyrene		< 10.0	ug/L		2/4/2020 14:58
Benzo (k) fluoranthene < 10.0	Benzo (b) fluoranthen	ie	< 10.0	ug/L		2/4/2020 14:58
Bis (2-chloroethoxy) methane < 10.0	Benzo (g,h,i) perylene	9	< 10.0	ug/L		2/4/2020 14:58
Bis (2-chloroethyl) ether < 10.0	Benzo (k) fluoranthen	ie	< 10.0	ug/L		2/4/2020 14:58
Bis (2-ethylhexyl) phthalate < 10.0	Bis (2-chloroethoxy) 1	methane	< 10.0	ug/L		2/4/2020 14:58
Butylbenzylphthalate < 10.0	Bis (2-chloroethyl) et	her	< 10.0	ug/L		2/4/2020 14:58
Caprolactam < 10.0	Bis (2-ethylhexyl) pht	halate	< 10.0	ug/L		2/4/2020 14:58
Carbazole < 10.0	Butylbenzylphthalate		< 10.0	ug/L		2/4/2020 14:58
Chrysene < 10.0	Caprolactam		< 10.0	ug/L		2/4/2020 14:58
Dibenz (a,h) anthracene< 10.0ug/L2/4/202014:58Dibenzofuran< 10.0	Carbazole		< 10.0	ug/L		2/4/2020 14:58
Dibenzofuran< 10.0ug/L2/4/202014:58Diethyl phthalate< 10.0	Chrysene		< 10.0	ug/L		2/4/2020 14:58
Diethyl phthalate< 10.0ug/L2/4/202014:58Dimethyl phthalate< 20.0	Dibenz (a,h) anthrace	ne	< 10.0	ug/L		2/4/2020 14:58
Dimethyl phthalate< 20.0ug/L2/4/202014:58Di-n-butyl phthalate< 10.0	Dibenzofuran		< 10.0	ug/L		2/4/2020 14:58
Di-n-butyl phthalate< 10.0ug/L2/4/202014:58Di-n-octylphthalate< 10.0	Diethyl phthalate		< 10.0	ug/L		2/4/2020 14:58
Di-n-octylphthalate < 10.0	Dimethyl phthalate		< 20.0	ug/L		2/4/2020 14:58
Fluoranthene < 10.0	Di-n-butyl phthalate		< 10.0	ug/L		2/4/2020 14:58
Fluorene < 10.0	Di-n-octylphthalate		< 10.0	ug/L		2/4/2020 14:58
Hexachlorobenzene < 10.0	Fluoranthene		< 10.0	ug/L		2/4/2020 14:58
Hexachlorobenzene< 10.0ug/L2/4/202014:58Hexachlorobutadiene< 10.0	Fluorene		< 10.0			2/4/2020 14:58
Hexachlorobutadiene < 10.0 ug/L 2/4/2020 14:58 Hexachlorocyclopentadiene < 10.0	Hexachlorobenzene		< 10.0			2/4/2020 14:58
Hexachlorocyclopentadiene < 10.0 ug/L 2/4/2020 14:58	Hexachlorobutadiene		< 10.0			2/4/2020 14:58
	Hexachlorocyclopenta	adiene	< 10.0			2/4/2020 14:58
			< 10.0	ug/L		

Client:	Invent	tum Engineerin	<u>g, P.C.</u>				
Project Reference:	Riverv	iew					
Sample Identifier:	Settli	ng Pond-01/31/	2020				
Lab Sample ID:	2005	01-02		Dat	e Sampled:	1/31/2020	
Matrix:	Aq Li	quid		Dat	e Received:	2/3/2020	
Indeno (1,2,3-cd) pyre	ene	< 10.0	ug/L			2/4/2020	14:58
Isophorone		< 10.0	ug/L			2/4/2020	14:58
Naphthalene		< 10.0	ug/L			2/4/2020	14:58
Nitrobenzene		< 10.0	ug/L			2/4/2020	14:58
N-Nitroso-di-n-propyl	amine	< 10.0	ug/L			2/4/2020	14:58
N-Nitrosodiphenylami	ne	< 10.0	ug/L			2/4/2020	14:58
Pentachlorophenol		< 20.0	ug/L			2/4/2020	14:58
Phenanthrene		< 10.0	ug/L			2/4/2020	14:58
Phenol		< 10.0	ug/L			2/4/2020	14:58
Pyrene		< 10.0	ug/L			2/4/2020	14:58
<u>Surrogate</u>		Per	rcent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
2,4,6-Tribromophenol			76.4	59.6 - 114		2/4/2020	14:58
2-Fluorobiphenyl			56.6	36.2 - 99.1		2/4/2020	14:58
2-Fluorophenol			34.6	14.9 - 105		2/4/2020	14:58
Nitrobenzene-d5			66.0	53.7 - 102		2/4/2020	14:58
Phenol-d5			24.9	10 - 106		2/4/2020	14:58
Terphenyl-d14			70.9	58.7 - 116		2/4/2020	14:58
Method Referen	ce(s):	EPA 8270D					
Preparation Dat Data File:	e:	EPA 3510C 2/4/2020 B44292.D					
<u>Total Suspended S</u>	<u>Solids</u>						
Analyte		Result	<u>Units</u>		Qualifier	Date Anal	<u>yzed</u>
Solids, Suspended		58	mg/L			2/3/2020	
Method Referen Subcontractor E		SM 2540 D 11148					
<u>Total Cyanide</u>							
<u>Analyte</u>		Result	<u>Units</u>		<u>Qualifier</u>	Date Anal	<u>vzed</u>
Cyanide, Total		0.0131	mg/L		-	2/5/2020	-

Client:	<u>Inventum Engineering, P.C.</u>		
Project Reference:	Riverview		
Sample Identifier:	Settling Pond-01/31/2020		
Lab Sample ID:	200501-02	Date Sampled:	1/31/2020
Matrix:	Aq Liquid	Date Received:	2/3/2020

 Method Reference(s):
 SM 4500 CN E - 2011

 SM 4500 CN C - 2011

 Preparation Date:
 2/5/2020

Client:	<u>Inventum Engineering, P.C.</u>		
Project Reference:	Riverview		
Sample Identifier:	Mixing Pond-01/31/2020		
Lab Sample ID:	200501-03	Date Sampled:	1/31/2020
Matrix:	Aq Liquid	Date Received:	2/3/2020

Mercury

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Mercury	< 0.000200	mg/L		2/7/2020 11:13
Method Reference(s):EPA 7470APreparation Date:2/6/2020Data File:Hg200207APriority Pollutant Metals (ICP)				
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.100	mg/L		2/6/2020 10:51
Antimony	< 0.0600	mg/L		2/4/2020 20:41
Arsenic	< 0.0100	mg/L		2/6/2020 10:51
Beryllium	< 0.00500	mg/L		2/4/2020 20:41

Arsenic	< 0.0100	mg/L	2/6/2020	10:51
Beryllium	< 0.00500	mg/L	2/4/2020	20:41
Cadmium	< 0.00500	mg/L	2/4/2020	20:41
Chromium	< 0.0100	mg/L	2/4/2020	20:41
Copper	< 0.0400	mg/L	2/4/2020	20:41
Iron	0.279	mg/L	2/6/2020	10:51
Lead	< 0.0100	mg/L	2/4/2020	20:41
Manganese	0.0158	mg/L	2/4/2020	20:41
Nickel	< 0.0400	mg/L	2/4/2020	20:41
Selenium	< 0.0200	mg/L	2/4/2020	20:41
Silver	< 0.0100	mg/L	2/4/2020	20:41
Thallium	< 0.0250	mg/L	2/4/2020	20:41
Zinc	< 0.0600	mg/L	2/4/2020	20:41
Method Reference(s): EP	PA 6010C			

Semi-Volatile Organics (Acid/Base Neutrals)

EPA 3005A

2/3/2020

200206A

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 10.4	ug/L		2/4/2020 15:26

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Preparation Date:

Data File:

Client:	Inventum	Engineering,	<u>P.C.</u>			
Project Reference:	Riverview					
Sample Identifier: Lab Sample ID:	Mixing Po 200501-0	ond-01/31/20 3	20	Date Sampled:	1/31/2020	
Matrix:	Aq Liquid			Date Received:	2/3/2020	
1,2,4,5-Tetrachlorobe	nzene	< 10.4	ug/L		2/4/2020	15:26
1,2,4-Trichlorobenzer	ne	< 10.4	ug/L		2/4/2020	15:26
1,2-Dichlorobenzene		< 10.4	ug/L		2/4/2020	15:26
1,3-Dichlorobenzene		< 10.4	ug/L		2/4/2020	15:26
1,4-Dichlorobenzene		< 10.4	ug/L		2/4/2020	15:26
2,2-Oxybis (1-chlorop	propane)	< 10.4	ug/L		2/4/2020	15:26
2,3,4,6-Tetrachloroph	enol	< 10.4	ug/L		2/4/2020	15:26
2,4,5-Trichloropheno	1	< 10.4	ug/L		2/4/2020	15:26
2,4,6-Trichloropheno	1	< 20.8	ug/L		2/4/2020	15:26
2,4-Dichlorophenol		< 10.4	ug/L		2/4/2020	15:26
2,4-Dimethylphenol		< 10.4	ug/L		2/4/2020	15:26
2,4-Dinitrophenol		< 20.8	ug/L		2/4/2020	15:26
2,4-Dinitrotoluene		< 10.4	ug/L		2/4/2020	15:26
2,6-Dinitrotoluene		< 10.4	ug/L		2/4/2020	15:26
2-Chloronaphthalene		< 10.4	ug/L		2/4/2020	15:26
2-Chlorophenol		< 10.4	ug/L		2/4/2020	15:26
2-Methylnapthalene		< 10.4	ug/L		2/4/2020	15:26
2-Methylphenol		< 10.4	ug/L		2/4/2020	15:26
2-Nitroaniline		< 20.8	ug/L		2/4/2020	15:26
2-Nitrophenol		< 10.4	ug/L		2/4/2020	15:26
3&4-Methylphenol		< 10.4	ug/L		2/4/2020	15:26
3,3'-Dichlorobenzidin	e	< 10.4	ug/L		2/4/2020	15:26
3-Nitroaniline		< 20.8	ug/L		2/4/2020	15:26
4,6-Dinitro-2-methylp	ohenol	< 20.8	ug/L		2/4/2020	15:26
4-Bromophenyl pheny	yl ether	< 10.4	ug/L		2/4/2020	15:26
4-Chloro-3-methylph	enol	< 10.4	ug/L		2/4/2020	15:26
4-Chloroaniline		< 10.4	ug/L		2/4/2020	15:26
4-Chlorophenyl pheny	yl ether	< 10.4	ug/L		2/4/2020	15:26
4-Nitroaniline		< 20.8	ug/L		2/4/2020	15:26
4-Nitrophenol		< 20.8	ug/L		2/4/2020	15:26

Client:	Inventum Eng	<u>gineering, P.(</u>	<u>C.</u>			
Project Reference:	Riverview					
Sample Identifier:	Mixing Pond-	01/31/2020				
Lab Sample ID:	200501-03			Date Sampled:	1/31/2020	
Matrix:	Aq Liquid			Date Received:	2/3/2020	
Acenaphthene		< 10.4	ug/L		2/4/2020	15:26
Acenaphthylene		< 10.4	ug/L		2/4/2020	15:26
Acetophenone		< 10.4	ug/L		2/4/2020	15:26
Anthracene		< 10.4	ug/L		2/4/2020	15:26
Atrazine		< 10.4	ug/L		2/4/2020	15:26
Benzaldehyde		< 10.4	ug/L		2/4/2020	15:26
Benzo (a) anthracene		< 10.4	ug/L		2/4/2020	15:26
Benzo (a) pyrene		< 10.4	ug/L		2/4/2020	15:26
Benzo (b) fluoranthen	e	< 10.4	ug/L		2/4/2020	15:26
Benzo (g,h,i) perylene		< 10.4	ug/L		2/4/2020	15:26
Benzo (k) fluoranthen	e	< 10.4	ug/L		2/4/2020	15:26
Bis (2-chloroethoxy) n	nethane	< 10.4	ug/L		2/4/2020	15:26
Bis (2-chloroethyl) eth	ner	< 10.4	ug/L		2/4/2020	15:26
Bis (2-ethylhexyl) phtl	halate	< 10.4	ug/L		2/4/2020	15:26
Butylbenzylphthalate		< 10.4	ug/L		2/4/2020	15:26
Caprolactam		< 10.4	ug/L		2/4/2020	15:26
Carbazole		< 10.4	ug/L		2/4/2020	15:26
Chrysene		< 10.4	ug/L		2/4/2020	15:26
Dibenz (a,h) anthracer	ne	< 10.4	ug/L		2/4/2020	15:26
Dibenzofuran		< 10.4	ug/L		2/4/2020	15:26
Diethyl phthalate		< 10.4	ug/L		2/4/2020	15:26
Dimethyl phthalate		< 20.8	ug/L		2/4/2020	15:26
Di-n-butyl phthalate		< 10.4	ug/L		2/4/2020	15:26
Di-n-octylphthalate		< 10.4	ug/L		2/4/2020	15:26
Fluoranthene		< 10.4	ug/L		2/4/2020	15:26
Fluorene		< 10.4	ug/L		2/4/2020	15:26
Hexachlorobenzene		< 10.4	ug/L		2/4/2020	15:26
Hexachlorobutadiene		< 10.4	ug/L		2/4/2020	15:26
Hexachlorocyclopenta	diene	< 10.4	ug/L		2/4/2020	15:26
Hexachloroethane		< 10.4	ug/L		2/4/2020	15:26

Client:	Invent	um Engine	ering	<u>, P.C.</u>				
Project Reference:	Rivervi	iew						
Sample Identifier:	Mixin	g Pond-01/	31/20	020				
Lab Sample ID:	20050)1-03			Dat	te Sampled:	1/31/2020	
Matrix:	Aq Lic	quid			Dat	te Received:	2/3/2020	
Indeno (1,2,3-cd) pyrer	ne	< 1	0.4	ug/L			2/4/2020	15:26
Isophorone		< 1	0.4	ug/L			2/4/2020	15:26
Naphthalene		< 1	0.4	ug/L			2/4/2020	15:26
Nitrobenzene		< 1	0.4	ug/L			2/4/2020	15:26
N-Nitroso-di-n-propyla	mine	< 1	0.4	ug/L			2/4/2020	15:26
N-Nitrosodiphenylamir	ne	< 1	0.4	ug/L			2/4/2020	15:26
Pentachlorophenol		< 20	0.8	ug/L			2/4/2020	15:26
Phenanthrene		< 1	0.4	ug/L			2/4/2020	15:26
Phenol		< 1	0.4	ug/L			2/4/2020	15:26
Pyrene		< 1	0.4	ug/L			2/4/2020	15:26
<u>Surrogate</u>			<u>Perc</u>	<u>ent Recovery</u>	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>zed</u>
2,4,6-Tribromophenol				68.1	59.6 - 114		2/4/2020	15:26
2-Fluorobiphenyl				55.8	36.2 - 99.1		2/4/2020	15:26
2-Fluorophenol				35.4	14.9 - 105		2/4/2020	15:26
Nitrobenzene-d5				67.9	53.7 - 102		2/4/2020	15:26
Phenol-d5				25.3	10 - 106		2/4/2020	15:26
Terphenyl-d14				53.4	58.7 - 116	*	2/4/2020	15:26
Method Reference	e(s):	EPA 8270D						
Preparation Date Data File:	2:	EPA 3510C 2/4/2020 B44293.D						
<u>Total Suspended S</u>	<u>olids</u>							
Analyte		R	esult	<u>Units</u>		Qualifier	Date Anal	yzed
Solids, Suspended		3.8		mg/L			2/3/2020	
Method Referenc Subcontractor EL		SM 2540 D 11148						
<u>Total Cyanide</u>								
Analyte		R	esult	<u>Units</u>		<u>Qualifier</u>	Date Anal	<u>vzed</u>
Cyanide, Total			.0100	mg/L			2/5/2020	

Client:	Inventum Engineering, P.C.			
Project Reference:	Riverview			
Sample Identifier:	Mixing Pond-01/31/2020			
Lab Sample ID:	200501-03	Date Sampled:	1/31/2020	
Matrix:	Aq Liquid	Date Received:	2/3/2020	
		Dute necerveu.	2/3/2020	

 Method Reference(s):
 SM 4500 CN E - 2011

 SM 4500 CN C - 2011

 Preparation Date:
 2/5/2020

Client:	Inventum Engineering, P.C.		
Project Reference:	Riverview		
Sample Identifier:	Coal Yard 1-01/31/2020		
Lab Sample ID:	200501-04	Date Sampled:	1/31/2020
Matrix:	Aq Liquid	Date Received:	2/3/2020

Mercury

Zinc

Analyte Mercury Method Reference(s): Preparation Date:	Result 0.000441 EPA 7470A 2/6/2020	<u>Units</u> mg/L	Qualifier	Date Analyzed 2/7/2020 11:15
Data File:	Hg200207A			
Priority Pollutant Metals	<u>s (ICP)</u>			
<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	5.78	mg/L		2/6/2020 10:55
Antimony	< 0.0600	mg/L		2/4/2020 20:46
Arsenic	< 0.0100	mg/L		2/6/2020 10:55
Beryllium	< 0.00500	mg/L		2/4/2020 20:46
Cadmium	< 0.00500	mg/L		2/4/2020 20:46
Chromium	< 0.0100	mg/L		2/4/2020 20:46
Copper	0.0870	mg/L		2/4/2020 20:46
Iron	13.5	mg/L		2/6/2020 10:55
Lead	0.0212	mg/L		2/4/2020 20:46
Manganese	1.81	mg/L		2/4/2020 20:46
Nickel	0.104	mg/L		2/4/2020 20:46
Selenium	< 0.0200	mg/L		2/4/2020 20:46
Silver	< 0.0100	mg/L		2/4/2020 20:46
Thallium	< 0.0250	mg/L		2/4/2020 20:46

	0.345
Method Reference(s):	EPA 6010C
	EPA 3005A
Preparation Date:	2/3/2020
Data File:	200206A

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1-Biphenyl	< 10.0	ug/L		2/4/2020 15:55

mg/L

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

2/4/2020 20:46

Client:	Inventum	Engineering,	<u>P.C.</u>			
Project Reference:	Riverview					
Sample Identifier:	Coal Yard	1-01/31/202	0			
Lab Sample ID:	200501-04	4		Date Sampled:	1/31/2020	
Matrix:	Aq Liquid			Date Received:	2/3/2020	
1,2,4,5-Tetrachlorobe	enzene	< 10.0	ug/L		2/4/2020	15:55
1,2,4-Trichlorobenze	ene	< 10.0	ug/L		2/4/2020	15:55
1,2-Dichlorobenzene		< 10.0	ug/L		2/4/2020	15:55
1,3-Dichlorobenzene		< 10.0	ug/L		2/4/2020	15:55
1,4-Dichlorobenzene		< 10.0	ug/L		2/4/2020	15:55
2,2-Oxybis (1-chloro)	propane)	< 10.0	ug/L		2/4/2020	15:55
2,3,4,6-Tetrachloropl	henol	< 10.0	ug/L		2/4/2020	15:55
2,4,5-Trichlorophenc	ol	< 10.0	ug/L		2/4/2020	15:55
2,4,6-Trichlorophenc	ol	< 20.0	ug/L		2/4/2020	15:55
2,4-Dichlorophenol		< 10.0	ug/L		2/4/2020	15:55
2,4-Dimethylphenol		< 10.0	ug/L		2/4/2020	15:55
2,4-Dinitrophenol		< 20.0	ug/L		2/4/2020	15:55
2,4-Dinitrotoluene		< 10.0	ug/L		2/4/2020	15:55
2,6-Dinitrotoluene		< 10.0	ug/L		2/4/2020	15:55
2-Chloronaphthalene	2	< 10.0	ug/L		2/4/2020	15:55
2-Chlorophenol		< 10.0	ug/L		2/4/2020	15:55
2-Methylnapthalene		< 10.0	ug/L		2/4/2020	15:55
2-Methylphenol		< 10.0	ug/L		2/4/2020	15:55
2-Nitroaniline		< 20.0	ug/L		2/4/2020	15:55
2-Nitrophenol		< 10.0	ug/L		2/4/2020	15:55
3&4-Methylphenol		< 10.0	ug/L		2/4/2020	15:55
3,3'-Dichlorobenzidii	ne	< 10.0	ug/L		2/4/2020	15:55
3-Nitroaniline		< 20.0	ug/L		2/4/2020	15:55
4,6-Dinitro-2-methyl	phenol	< 20.0	ug/L		2/4/2020	15:55
4-Bromophenyl phen	yl ether	< 10.0	ug/L		2/4/2020	15:55
4-Chloro-3-methylph	-	< 10.0	ug/L		2/4/2020	
4-Chloroaniline		< 10.0	ug/L		2/4/2020	
4-Chlorophenyl phen	yl ether	< 10.0	ug/L		2/4/2020	
4-Nitroaniline	-	< 20.0	ug/L		2/4/2020	
4-Nitrophenol		< 20.0	ug/L		2/4/2020	
· ····· opriorior		2010	~0/ 2		_, 1,2020	_0.00

Client:	<u>Inventum Er</u>	ngineering	<u>P.C.</u>		
Project Reference:	Riverview				
Sample Identifier:	Coal Yard 1-	01/31/202	20		
Lab Sample ID:	200501-04			Date Sampled:	1/31/2020
Matrix:	Aq Liquid			Date Received:	2/3/2020
Acenaphthene		< 10.0	ug/L		2/4/2020 15:55
Acenaphthylene		< 10.0	ug/L		2/4/2020 15:55
Acetophenone		< 10.0	ug/L		2/4/2020 15:55
Anthracene		< 10.0	ug/L		2/4/2020 15:55
Atrazine		< 10.0	ug/L		2/4/2020 15:55
Benzaldehyde		< 10.0	ug/L		2/4/2020 15:55
Benzo (a) anthracene	<u>)</u>	< 10.0	ug/L		2/4/2020 15:55
Benzo (a) pyrene		< 10.0	ug/L		2/4/2020 15:55
Benzo (b) fluoranthe	ne	< 10.0	ug/L		2/4/2020 15:55
Benzo (g,h,i) peryleno	е	< 10.0	ug/L		2/4/2020 15:55
Benzo (k) fluoranthe	ne	< 10.0	ug/L		2/4/2020 15:55
Bis (2-chloroethoxy)	methane	< 10.0	ug/L		2/4/2020 15:55
Bis (2-chloroethyl) et	ther	< 10.0	ug/L		2/4/2020 15:55
Bis (2-ethylhexyl) ph	thalate	< 10.0	ug/L		2/4/2020 15:55
Butylbenzylphthalate	2	< 10.0	ug/L		2/4/2020 15:55
Caprolactam		< 10.0	ug/L		2/4/2020 15:55
Carbazole		< 10.0	ug/L		2/4/2020 15:55
Chrysene		< 10.0	ug/L		2/4/2020 15:55
Dibenz (a,h) anthrace	ene	< 10.0	ug/L		2/4/2020 15:55
Dibenzofuran		< 10.0	ug/L		2/4/2020 15:55
Diethyl phthalate		< 10.0	ug/L		2/4/2020 15:55
Dimethyl phthalate		< 20.0	ug/L		2/4/2020 15:55
Di-n-butyl phthalate		< 10.0	ug/L		2/4/2020 15:55
Di-n-octylphthalate		< 10.0	ug/L		2/4/2020 15:55
Fluoranthene		< 10.0	ug/L		2/4/2020 15:55
Fluorene		< 10.0	ug/L		2/4/2020 15:55
Hexachlorobenzene		< 10.0	ug/L		2/4/2020 15:55
Hexachlorobutadiene	<u>)</u>	< 10.0	ug/L		2/4/2020 15:55
Hexachlorocyclopent	adiene	< 10.0	ug/L		2/4/2020 15:55
Hexachloroethane		< 10.0	ug/L		2/4/2020 15:55

Client:	Inventum	<u>n Engineering</u>	<u>g, P.C.</u>				
Project Reference:	Riverview	7					
Sample Identifier:	Coal Yard	d 1-01/31/20	20				
Lab Sample ID:	200501-	04		Dat	e Sampled:	1/31/2020	
Matrix:	Aq Liqui	d		Dat	e Received:	2/3/2020	
Indeno (1,2,3-cd) pyrer	ie	< 10.0	ug/L			2/4/2020	15:55
Isophorone		< 10.0	ug/L			2/4/2020	15:55
Naphthalene		< 10.0	ug/L			2/4/2020	15:55
Nitrobenzene		< 10.0	ug/L			2/4/2020	15:55
N-Nitroso-di-n-propyla	mine	< 10.0	ug/L			2/4/2020	15:55
N-Nitrosodiphenylamir	ne	< 10.0	ug/L			2/4/2020	15:55
Pentachlorophenol		< 20.0	ug/L			2/4/2020	15:55
Phenanthrene		< 10.0	ug/L			2/4/2020	15:55
Phenol		< 10.0	ug/L			2/4/2020	15:55
Pyrene		< 10.0	ug/L			2/4/2020	15:55
<u>Surrogate</u>		Per	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
2,4,6-Tribromophenol			71.8	59.6 - 114		2/4/2020	15:55
2-Fluorobiphenyl			54.8	36.2 - 99.1		2/4/2020	15:55
2-Fluorophenol			33.1	14.9 - 105		2/4/2020	15:55
Nitrobenzene-d5			62.3	53.7 - 102		2/4/2020	15:55
Phenol-d5			23.6	10 - 106		2/4/2020	15:55
Terphenyl-d14			70.2	58.7 - 116		2/4/2020	15:55
Method Referenc		A 8270D A 3510C					
Preparation Date Data File:	B4	4/2020 4294.D					
<u>Total Suspended S</u>	<u>olids</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>		Qualifier	Date Anal	yzed
Solids, Suspended		920	mg/L		D	2/3/2020	
Method Referenc Subcontractor EL		I 2540 D 148					
<u>Total Cyanide</u>							
Analyte		Result	<u>Units</u>		Qualifier	Date Anal	yzed
Cyanide, Total		0.0140	mg/L			2/5/2020	

Client:	Inventum Engineering, P.C.			
Project Reference:	Riverview			
Sample Identifier:	Coal Yard 1-01/31/2020			
Lab Sample ID:	200501-04	Date Sampled:	1/31/2020	
Matrix:	Aq Liquid	Date Received:	2/3/2020	

Method Reference(s):	SM 4500 CN E - 2011
	SM 4500 CN C - 2011
Preparation Date:	2/5/2020

Method Blank Report

Client:	Inventum Engineering, P.C.
Project Reference:	Riverview
Lab Project ID:	200501
Matrix:	Aq Liquid

Priority Pollutant Metals (ICP)

<u>Analyte</u>		Result	<u>Units</u>	Qualifier	Date Analy	zed
Aluminum		<0.100	mg/L		2/6/2020	10:19
Antimony		<0.0600	mg/L		2/4/2020	20:05
Arsenic		< 0.0100	mg/L		2/6/2020	10:19
Beryllium		< 0.00500	mg/L		2/4/2020	20:05
Cadmium		<0.00500	mg/L		2/4/2020	20:05
Chromium		< 0.0100	mg/L		2/4/2020	20:05
Copper		< 0.0400	mg/L		2/4/2020	20:05
Iron		<0.100	mg/L		2/6/2020	10:19
Lead		< 0.0100	mg/L		2/4/2020	20:05
Manganese		<0.0150	mg/L		2/4/2020	20:05
Nickel		< 0.0400	mg/L		2/4/2020	20:05
Selenium		<0.0200	mg/L		2/4/2020	20:05
Silver		< 0.0100	mg/L		2/4/2020	20:05
Thallium		<0.0250	mg/L		2/4/2020	20:05
Zinc		<0.0600	mg/L		2/4/2020	20:05
Method Reference(s):	EPA 6010C					

	EPA 3005A
Preparation Date:	2/3/2020
Data File:	200206A
QC Batch ID:	QC200203Water
QC Number:	1

PARADIGM PARADIGM

QC Report for Laboratory Control Sample and Control Sample Duplicate

Client:

Project Reference:

Riverview

Inventum Engineering, P.C.

Lab Project ID:	200501	4												
Matrix:	Aq Liquid	uid												
Priority Pollutant Metals (ICP)	letals (ICP													
	LCS	LCSD	<u>Spike</u>	LCS	LCSD	LCS %	LCSD %	<u>% Rec</u>	LCS	LCSD	LCSD Relative %	RPD	RPD	Date
<u>Analyte</u>	Added A	<u>Added</u>	Units	Result	Result	Recovery	<u>Recovery</u>	Limits	Outliers	Outliers	Outliers Difference	Limit	Outliers	Analyzed
Aluminum		2.50	mg/L	2.54	2.53	102	101	85 - 115			0.433	20		2/6/2020
Antimony	2.50	2.50	mg/L	2.54	2.63	102	105	85 - 115			3.27	20		2/4/2020
Arsenic	2.50	2.50	mg/L	2.46	2.45	98.3	97.9	85 - 115			0.367	20		2/6/2020
Beryllium	-	0.500	mg/L	0.490	0.494	98.1	98.7	85 - 115			0.691	20		2/4/2020
Cadmium	1.00	1.00	mg/L	1.11	1.13	111	113	85 - 115			1,85	20		2/4/2020
Chromium		2.50	mg/L	2.57	2.66	103	106	85 • 115			3.50	20		2/4/2020
Copper	2.50	2.50	mg/L	2.29	2.32	91.6	92.9	85 - 115			1.39	20		2/4/2020
Iron	2.50	2.50	mg/L	2.45	2.47	98.1	98.9	85 · 115			0.772	20		2/6/2020
Lead		2.50	mg/L	2.53	2.64	101	105	85 - 115			4.13	20		2/4/2020
:)	,	i											

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Report Prepared Friday, February 07, 2020

Zinc

2.50 2.50

2.50 2.50

mg/L mg/L mg/L mg/L

2.52 2.67

2.62 2.93

101

105

85 - 115 85 - 115 85 - 115 85 - 115

Silver

0.250

0.250

0.242

0.249

96.8

99.4 112

107

117

*

20 20 20 20

2/4/2020 2/4/2020 2/4/2020

3.92 9.23 2.72 2.92 3.93 1.37

20 20

2/4/2020 2/6/2020 2.73

2.81 5.09 1.07

109

2.50 5.00 1.00

2.50 5.00 1.00

Thallium

Nickel Selenium

Manganese

mg/L mg/L

1.05

105

4.90

97.9

102 107

85

85 - 115 - 115

2/4/2020

(PARADIGM)
	PARA	
	DIGM	

QC Report for Laboratory Control Sample and Control Sample Duplicate

ICC ICCD ICCO ICCD % % Dar ICC ICCD Dalative %	<u>איומר איז אריים אין אייומר אייומר</u>
	LCSD Relative %
	Date

Method Reference(s):EPA 6010CEPA 3005AEPA 3005APreparation Date:2/3/2020Data File:200206AQC Number:1QC Batch ID:QC200203Water

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Report Prepared Friday, February 07, 2020

PARADIGM PARA	DIG	Σ										e 25 of 40
			QC Repo	ort for S	ample Sp	OC Report for Sample Spike and Sam	mple Du	ple Duplicate				Daa
Client: Project Reference:	Inventum Riverview	Inventum Engineering, P.C. Riverview	ering, P.	Ĵ					Lab Project ID:		200501	
Lab Sample ID: Sample Identifier: Matrix:	200501-01 Outfall 2-0 Aq Liquid	200501-01 Outfall 2-01312020 Aq Liquid	020						Date Sampled: Date Received:		1/31/2020 2/3/2020	
Priority Pollutant Metals (ICP)	fetals (ICP)											
Analyte	<u>Sample</u> <u>Results</u>	<u>Result</u> <u>Units</u>	<u>Spike</u> Added	<u>Spike</u> <u>Result</u>	<u>Spike %</u> Recovery	<u>% Rec</u> Limits	<u>Spike</u> Outliers	<u>Duplicate</u> <u>Result</u>	<u>Relative %</u> Difference	<u>RPD</u> Limit	<u>RPD</u> Outliers	<u>Date</u> Analyzed
Aluminum	< 0.100	mg/L	2.50	2.73	109	75 - 125		0.101	NC	20		2/6/2020
Antimony	< 0.0600	mg/L	2.50	2.65	106	75 - 125		<0.0600	NC	20		2/4/2020
Arsenic	< 0.0100	mg/L	2.50	2.48	99.1	75 - 125		<0.0100	NC	20		2/6/2020
Beryllium	< 0.00500	mg/L	0.500	0.490	98.1	75 - 125		<0.00500	NC	20		2/4/2020
Cadmium	< 0.00500	mg/L	1.00	1.10	110	75 - 125		<0.00500	NC	20		2/4/2020
Chromium	< 0.0100	mg/L	2.50	2.66	106	75 - 125		<0.0100	NC	20		2/4/2020
Copper	< 0.0400	mg/L	2.50	2.43	97.3	75 - 125		<0.0400	NC	20		2/4/2020
Iron	0.457	mg/L	2.50	3.04	103	75 - 125		0.402	12.9	20		2/6/2020
Lead	< 0.0100	mg/L	2.50	2.62	105	75 - 125		<0.0100	NC	20		2/4/2020
Manganese	0.184	mg/L	1.00	1.30	112	75 - 125		0.181	1.76	20		2/4/2020
Nickel	< 0.0400	mg/L	5.00	5.02	100	75 - 125		<0.0400	NC	20		2/4/2020
Selenium	< 0.0200	mg/L	2.50	2.52	101	75 - 125		<0.0200	NC	20		2/6/2020
Silver	< 0.0100	mg/L	0.250	0.264	106	75 - 125		<0.0100	NC	20		2/4/2020
Thallium	< 0.0250	mg/L	2.50	2.81	113	75 - 125		<0.0250	NC	20		2/4/2020
NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.	able to RPD if s	sample or di	uplicate res	ult is non-ı	detect or estir	nated (see prir	nary report	for data flag	ys). Applicable t	to MS if s	sample is greate	er or equal to
This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance	tipage docume	ent and show	uld only be	evaluated	in its entirety	y. The Chain of	Custody pr	ovides addi	tional sample i	nformat	ion, including c	ompliance

Report Prepared Friday, February 07, 2020

with the sample condition requirements upon receipt.

PARADIG PARADIG VIENE Inventu Project Reference: Rivervie Lab Sample ID: 20050 Sample Identifier: Outfal Matrix: Aq Liq Priority Pollutant Metals (ICP) Sample Matrix Aq Liq Zinc < 0.0600 Method Reference(s): I Preparation Date: Preparation Date	PARADIGM Inventum Er ence: Riverview ID: 200501-01 ntifier: Outfall 2-0 Aq Liquid Sample Res Results Un < 0.0600 mg ethod Reference(s): EPA 60 EPA 30 2/3/20	m Enginee w V 1-01 (1-01 (1-01 (1-01) (1-0) (1-01)	<u>QC Repo</u> ering, P.G)20)20)20)20)20)20)20	rt for S Spike Result	OC Report for Sample Spike and Sam ering. P.C. ering. P.C. Spike Spike ½ Added Spike ½ Spike Spike ½ Added Result Result Recovery 2.50 2.69	ike and Sa % Rec Limits 75 - 125	mple Du Spike Outliers	ple Duplicate Spike Duplicate Outliers Result <0.0600	Lab Project ID: Date Sampled: Date Received: MC 20		200501 1/31/2020 2/3/2020 <u>RPD</u> Uutliers	Date Analyzed 2/4/2020	Page 26 of 40
Lab Sample ID: Sample Identifier: Matrix:	2005(Outfal Aq Lic)1-01 2-01312(uid)20						Date Samp Date Recei		1/31/2020 2/3/2020		
Priority Pollutant M	Aetals (ICP)												
Analyte	<u>Sample</u> <u>Results</u>	<u>Result</u> <u>Units</u>	<u>Spike</u> <u>Added</u>	<u>Spike</u> <u>Result</u>	<u>Spike %</u> <u>Recovery</u>	<u>% Rec</u> Limits	<u>Spike</u> Outliers	<u>Duplicate</u> <u>Result</u>	<u>Relative %</u> Difference	<u>RPD</u> Limit		<u>Date</u> Analyzed	
Zinc	< 0.0600	mg/L	2.50	2.69	107	1		<0.0600	NC	20		2/4/2020	
Method Refer		EPA 6010C											
Preparation D		EPA 3005A 2/3/2020 200206A											
QC Batch ID:		QC200203Water	4										
NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see prima ten times the spike added.	able to RPD if	sample or du	plicate resu	llt is non-	detect or estin	nated (see pri	mary report	for data flag	ys). Applicable t	o MS if s	ry report for data flags). Applicable to MS if sample is greater or equal to	r or equal to	C
This report is part of a multipage document and should only be evaluated in its entirety. The Chain of C with the sample condition requirements upon receipt.	of a multipage document indition requirements upc	ent and shou upon receipt	ld only be e t.	evaluated	in its entirety	r. The Chain o	f Custody pr	ovides addi	tional sample ii	nformat	ustody provides additional sample information, including compliance	ompliance	

Report Prepared Friday, February 07, 2020

Client:	Invent	tum Engineering	<u>g, P.C.</u>				
Project Refer Lab Project II							
Matrix:	Aq Liq	uid					
Mercury							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
Mercury			<0.000200	mg/L		2/7/2020	11:00
Pro Da QC	ethod Reference(s): eparation Date: ita File: Batch ID: Number:	EPA 7470A 2/6/2020 Hg200207A QC200206HgWater 1					

PARADIGM

QC Report for Laboratory Control Sample and Control Sample Duplicate

Client:		Invei	Inventum Engineering, P.C.	ıgineer	ing, P.C.										
Project Reference:	rence:	Riverview	view												
Lab Project ID:	D:	200501	01												
Matrix:		Aq Liquid	quid												
Mercury															
		LCS	LCSD	<u>Spike</u>	LCS	LCSD	LCS %	LCSD %	<u>% Rec</u>	LCS	LCSD	LCSD Relative %	RPD	RPD	Date
<u>Analyte</u>		Added	Added	Units	Result	<u>Result</u>	Recovery	Recovery	<u>Limits</u>	<u>Outliers</u>	Outliers	Outliers Outliers Difference	Limit	<u>Outliers</u>	Analyzed
Mercury		0.00200 0.00200	0.00200	mg/L	0.00205	0.00205 0.00206	102	103	80 - 120			0.696	20		2/7/2020
2	Method Reference(s):	ıce(s):	EPA 7470A	470A											
P	Preparation Date: Data File:	te:	2/6/2020 Hg200207A	020 207A											
Q	QC Number:		1												

QC Number: QC Batch ID:

QC200206HgWater

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

ARADIGI				2		3						Page 29 of 40
<u>Inventun</u>	1 Engine	ering, P.(<u>1</u>					Lab Projec	t ID:	200501		
	7											
	-01 2-01312(iid)20						Date Samp Date Rece	oled: ived:	1/31/2020 2/3/2020		
<u>Sample</u> <u>Results</u>	<u>Result</u> <u>Units</u>	<u>Spike</u> Added	<u>Spike</u> <u>Result</u>	<u>Spike %</u> Recovery	<u>% Rec</u>	<u>Spike</u> Outliers	<u>Duplicate</u> <u>Result</u>	<u>Relative %</u> Difference	<u>RPD</u> Limit	<u>RPD</u> Outliers	<u>Date</u> Analyzed	
< 0.000200	mg/L	0.00200	0.00215	108	75 - 125		<0.000200	NC	20		2/7/2020	
:(s):	A 7470A 6/2020											
	:200206HgW	ater										
	Project Reference: Inventun Lab Sample Identifier: 00501 Matrix: 200501 Matrix: 200501 Mercury 200501 Mercury Sample Identifier: Mercury Sample Mercury Sample Mercury Sample Mercury Sample Mercury Sample Mercury < 0.000200	Inventum Engine Riverview 200501-01 200501-01 Outfall 2-01312(Aq Liquid Sample Result Results Units < 0.000200 mg/L ference(s): EPA 7470A hg200207A Hg200207A	Inventum Engine Riverview 200501-01 200501-01 Outfall 2-01312(Aq Liquid Aq Liquid Sample Result Results Units < 0.000200 mg/L ference(s): EPA 7470A 1g200207A Hg200206HgW	Inventum Engine Riverview 200501-01 200501-01 Outfall 2-01312(Aq Liquid Aq Liquid Sample Result Results Units < 0.000200 mg/L ference(s): EPA 7470A 1g200207A Hg200206HgW	Inventum Engine Riverview 200501-01 200501-01 Outfall 2-01312(Aq Liquid Aq Liquid Sample Result Results Units < 0.000200 mg/L ference(s): EPA 7470A 4g200207A Hg200206HgW	Inventum Engine Riverview 200501-01 200501-01 200tfall 2-01312(Aq Liquid Aq Liquid Sample Result Results Units < 0.000200 mg/L ference(s): EPA 7470A 2/6/2020 Hg200206HgW	Inventum Engine Riverview 200501-01 200501-01 200tfall 2-01312(Aq Liquid Aq Liquid Sample Result Results Units < 0.000200 mg/L ference(s): EPA 7470A 1g200207A Hg200206HgW	CC Report for Sample Spike and Sample Du Inventum Engineering, P.C. Riverview 200501-01 200501-01 200501-01 Outfall 2-01312020 2014 Aq Liquid Added Spike % Sample Result Spike Spike % Results Units Added Result Recovery < 0.000200	OC Report for Sample Spike and Sample Duplicate Inventum Engineering, P.C. Riverview 200501-01 200501-01 0utfall 2-01312020 Aq Liquid Spike Spike % % Rec Sample Result Spike Maded Result Result Maded Sample Result Added Result Result Spike % % Rec Spike Duplicate < 0.000200	QC Report for Sample Spike and Sample Duplicate Inventum Engineering, P.C. Riverview 200501-01 200501-01 0utfall 2-01312020 Aq Liquid Spike Spike % % Ref Spike Duplicate Sample Result Spike Spike % % Ref Spike Duplicate < 0.000200	OC Report for Sample Spike and Sample Duplicate Inventum Engineering, P.C. Riverview 200501-01 200 200 Added Result Result Recovery Limits Outliers Not Second Not Secon	AC.Report for Sample Spike and Sample Duplicate Inventum Engimeering. P.C. Riverview Lab Project ID: 200501-01 200501-01 200501-01 200501-01 Date Sampled: 1/31/2020 200501-01 200501-01 2/3/2020 2/3/2020 Aq Liquid Spike Spike % % Rec Spike % Spike % Mate % Sample Result Spike % Spike % % Rec Spike % Spike % Mate % Reput 2/3/2020 sesult % Park Non200 000215 108 75 - 125 <0.000200

ten times the spike added. NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance

Report Prepared Friday, February 07, 2020 with the sample condition requirements upon receipt.

Client:	Inventum Engineering, P.C.
Project Reference :	Riverview
Lab Project ID:	200501
Matrix:	Aq Liquid

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1-Biphenyl	<10.0	ug/L		2/4/2020	13:31
1,2,4,5-Tetrachlorobenzene	<10.0	ug/L ug/L		2/4/2020	13:31
1,2,4-Trichlorobenzene	<10.0	ug/L ug/L		2/4/2020	13:31
1,2-Dichlorobenzene	<10.0			2/4/2020	13:31
1,3-Dichlorobenzene	<10.0	ug/L ug/L		2/4/2020	13:31
1,4-Dichlorobenzene	<10.0			2/4/2020	13:31
2,2-Oxybis (1-chloropropane)	<10.0	ug/L		2/4/2020	13:31
2,3,4,6-Tetrachlorophenol	<10.0	ug/L		2/4/2020	13:31
•	<10.0	ug/L		2/4/2020	13:31
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	<10.0	ug/L		2/4/2020	13:31
•	<20.0	ug/L			13:31
2,4-Dichlorophenol	<10.0	ug/L		2/4/2020	13:31
2,4-Dimethylphenol	<10.0	ug/L		2/4/2020	13:31
2,4-Dinitrophenol		ug/L		2/4/2020	
2,4-Dinitrotoluene	<10.0	ug/L		2/4/2020	13:31
2,6-Dinitrotoluene	<10.0	ug/L		2/4/2020	13:31
2-Chloronaphthalene	<10.0	ug/L		2/4/2020	13:31
2-Chlorophenol	<10.0	ug/L		2/4/2020	13:31
2-Methylnapthalene	<10.0	ug/L		2/4/2020	13:31
2-Methylphenol	<10.0	ug/L		2/4/2020	13:31
2-Nitroaniline	<20.0	ug/L		2/4/2020	13:31
2-Nitrophenol	<10.0	ug/L		2/4/2020	13:31
3&4-Methylphenol	<10.0	ug/L		2/4/2020	13:31
3,3'-Dichlorobenzidine	<10.0	ug/L		2/4/2020	13:31
3-Nitroaniline	<20.0	ug/L		2/4/2020	13:31
4,6-Dinitro-2-methylphenol	<20.0	ug/L		2/4/2020	13:31
4-Bromophenyl phenyl ether	<10.0	ug/L		2/4/2020	13:31
4-Chloro-3-methylphenol	<10.0	ug/L		2/4/2020	13:31
4-Chloroaniline	<10.0	ug/L		2/4/2020	13:31

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Thursday, February 06, 2020

Client:	Inventum Engineering, P.C.
Project Reference:	Riverview
Lab Project ID:	200501
Matrix:	Aq Liquid

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
4-Chlorophenyl phenyl ether	<10.0	ug/L		2/4/2020	13:31
4-Chiorophenyi phenyi ether	<20.0)) 	2/4/2020	13:31
4-Nitrophenol	<20.0	ug/L		2/4/2020	13:31
Acenaphthene	<10.0	ug/L		2/4/2020	13:31
Acenaphthylene	<10.0	ug/L		2/4/2020	13:31
	<10.0	ug/L		2/4/2020	13:31
Acetophenone		ug/L			13:31
Anthracene	<10.0	ug/L		2/4/2020	
Atrazine	<10.0	ug/L		2/4/2020	13:31
Benzaldehyde	<10.0	ug/L		2/4/2020	13:31
Benzo (a) anthracene	<10.0	ug/L		2/4/2020	13:31
Benzo (a) pyrene	<10.0	ug/L		2/4/2020	13:31
Benzo (b) fluoranthene	<10.0	ug/L		2/4/2020	13:31
Benzo (g,h,i) perylene	<10.0	ug/L		2/4/2020	13:31
Benzo (k) fluoranthene	<10.0	ug/L		2/4/2020	13:31
Bis (2-chloroethoxy) methane	<10.0	ug/L		2/4/2020	13:31
Bis (2-chloroethyl) ether	<10.0	ug/L		2/4/2020	13:31
Bis (2-ethylhexyl) phthalate	<10.0	ug/L		2/4/2020	13:31
Butylbenzylphthalate	<10.0	ug/L		2/4/2020	13:31
Caprolactam	<10.0	ug/L		2/4/2020	13:31
Carbazole	<10.0	ug/L		2/4/2020	13:31
Chrysene	<10.0	ug/L		2/4/2020	13:31
Dibenz (a,h) anthracene	<10.0	ug/L		2/4/2020	13:31
Dibenzofuran	<10.0	ug/L		2/4/2020	13:31
Diethyl phthalate	<10.0	ug/L		2/4/2020	13:31
Dimethyl phthalate	<20.0	ug/L		2/4/2020	13:31
Di-n-butyl phthalate	<10.0	ug/L		2/4/2020	13:31
Di-n-octylphthalate	<10.0	ug/L		2/4/2020	13:31
Fluoranthene	<10.0	ug/L		2/4/2020	13:31

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Thursday, February 06, 2020

Client:	Inventum Engineering, P.C.
Project Reference:	Riverview
Lab Project ID:	200501
Matrix:	Aq Liquid

Semi-Volatile Organics (Acid/Base Neutrals)

<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
Fluorene		<10.0	ug/L		2/4/2020	13:31
Hexachlorobenzene		<10.0	ug/L		2/4/2020	13:31
Hexachlorobutadiene		<10.0	ug/L		2/4/2020	13:31
Hexachlorocyclopentadiene		<10.0	ug/L		2/4/2020	13:31
Hexachloroethane		<10.0	ug/L		2/4/2020	13:31
Indeno (1,2,3-cd) pyrene		<10.0	ug/L		2/4/2020	13:31
Isophorone		<10.0	ug/L		2/4/2020	13:31
Naphthalene		<10.0	ug/L		2/4/2020	13:31
Nitrobenzene		<10.0	ug/L		2/4/2020	13:31
N-Nitroso-di-n-propylamine	0	<10.0	ug/L		2/4/2020	13:31
N-Nitrosodiphenylamine		<10.0	ug/L		2/4/2020	13:31
Pentachlorophenol		<20.0	ug/L		2/4/2020	13:31
Phenanthrene		<10.0	ug/L		2/4/2020	13:31
Phenol		<10.0	ug/L		2/4/2020	13:31
Pyrene		<10.0	ug/L		2/4/2020	13:31
<u>Surrogate</u>		Percent Recovery	Limits	Outliers	Date Anal	yzed
2,4,6-Tribromophenol		69.7	59.6 - 114		2/4/2020	13:31
2-Fluorobiphenyl		51.8	36.2 - 99.1		2/4/2020	13:31
2-Fluorophenol		39.5	14.9 - 105		2/4/2020	13:31
Nitrobenzene-d5		64.1	53.7 - 102		2/4/2020	13:31
Phenol-d5		28.2	10 - 106		2/4/2020	13:31
Terphenyl-d14		89.6	58.7 - 116		2/4/2020	13:31
Method Reference(s):	EPA 8270D					
Preparation Date:	EPA 3510C 2/4/2020					
Data File:	B44289.D					
QC Batch ID:	QC200204ABN\	N				
QC Number:	1					

OC Report for Laboratory Control Sample

Client:

Inventum Engineering, P.C.

2-Chlorophenol	2,4-Dinitrotoluene	1,4-Dichlorobenzene	1,2,4-Trichlorobenzene	<u>Analyte</u>		Semi-Volatile Organi	Matrix:	Lab Project ID:	Project Reference:
						Semi-Volatile Organics (Acid/Base Neutrals)	Aq Liquid	200501	Riverview
75.0	50.0	50.0	50.0	Added	<u>Spike</u>				
ug/L	ug/L	ug/L	ug/L	Units	<u>Spike</u>				
45.4	35.6	18.0	21.3	<u>Result</u>	LCS				
60.5	71.1	36.0	42.7	Recovery	LCS %				
59.3 - 102	63.5 = 110	25.3 - 97.4	36.1 = 98.4	<u>Limits</u>	<u>% Rec</u>				
				<u>Outliers</u>	LCS				

Preparation Date:	Method Reference(s):	Pyrene	Phenol	Pentachlorophenol	N-Nitroso-di-n-propylamine	Acenaphthene	4-Nitrophenol	4-Chloro-3-methylphenol	2-Chlorophenol	2,4-Dinitrotoluene	1,4-Dichlorobenzene	1,2,4-Trichlorobenzene		Analyte	
2/4/2020	EPA 8270D EPA 3510C														
		50.0	75.0	75.0	50.0	50.0	75.0	75.0	75.0	50.0	50.0	50.0		Added	<u>Spike</u>
		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		Units	<u>Spike</u>
		35.3	20.6	74.6	35.6	31.7	19.8	52.1	45.4	35.6	18.0	21.3		Result	LCS
		70.6	27.4	99.4	71.3	63.3	26.4	69.5	60.5	71.1	36.0	42.7		Recovery	LCS %
		70.1	10 = 111	58.7 - 140	61.9 - 105	60 ± 100	10 - 124	68.2 - 109	59.3 - 102	63.5 = 110	25.3 = 97.4	36.1 = 98.4		limite	<u>% Rec</u>
														Outling	LCS
		2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	2/5/2020	<u>Allaty cen</u>	Analyzad	Date

Report Prepared Friday, February 07, 2020

compliance with the sample condition requirements upon receipt.

QC Number: QC Batch ID: Data File:

B44318.D

QC200204ABNW

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Client:	Inventum E	ngineering	<u>g. P.C.</u>			
Project Reference:	Riverview					
Lab Project ID: 20050						
Matrix:	Aq Liquid					
Total Cyanide						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Cyanide, Total			< 0.0100	mg/L		2/5/2020
Method Reference(s):		00 CN E - 2011				
Preparation Da QC Batch ID: QC Number:	ate: 2/5/2	00 CN C - 2011 020 0205WTCN				

QC Report for Laboratory Control Sample

Client:

Inventum Engineering, P.C.

Method Reference(s): Preparation Date: QC Number: QC Batch ID:	Cyanide, Total	<u>Analyte</u>		Total Cyanide	Matrix:	Project Keference: Lab Project ID:	
ence(s): SM 4500 CN E - 2011 SM 4500 CN C - 2011 'ate: 2/5/2020 1 QC200205WTCN					Aq Liquid	Riverview 200501	
	0.200	Added	<u>Spike</u>				
	mg/L	Units	<u>Spike</u>				
	0.188	Result	<u>LCS</u>				
	94,2	<u>Recovery</u>	LCS %				
	85 - 115	Limits	% Rec				
		S	LCS				
	2/5/2020	Analyzed	Date				

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	 Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

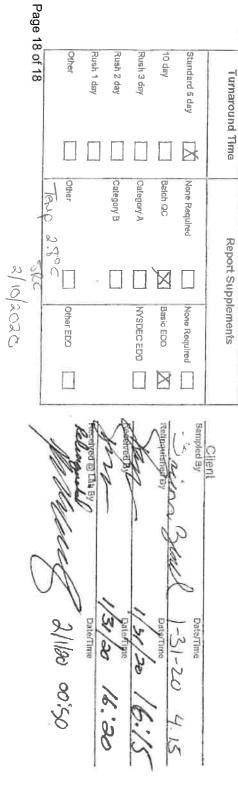
Turnaround Time Report Supplements Availability contingent upon lab approval; additional fees may apply. Standard 5 day None Required None Required 10 day Image: Category A None Required None Required Rush 3 day Image: Category A Image: Category B Image: Category B NYSDEC EDD Rush 1 day Image: Category B Image:	1/31/2020 1/30 X 1/31/2020 2:00m X 1/31/2020 2:50m X 1/31/2020 3:00 pm X 1/31/2020 3:00 pm X	DATE COLLECTED COLLECTECCOLLECTECCUCACUCACUCACUCACUCACUCACUCACUCACUCACU	PARADIGM
Report Supplements oproval; additional fees may apply. ed None Required Additional Basic EDD NYSDEC EDD Additional Other EDD Additional peese indicate EDD needed : Basic EDD	OUTFAL 2-0131202. Settling Pand -01/ Mixing Pard -01/ Coal Yard 2-01/	ATTN: Tob WA-DR-C AQ - Aqueous Liquid NQ - Non-Aqueous Liquid Sample IDENTIFIER	NVENTIMA Sitter Chausu Ernodon
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AR 4 1 1 1 1 131/2020 AQ 4 1 1 1 1 1 131/2020 AQ 4 1 1 1 1 1 131/2020 AQ 4 1 1 1 1 1 1 1 1 1 1 1	MA - Water WG - Groundwater WG - Groundwater H - Groundwat	AIN OF CUSTODY
$\frac{O_{1}/3_{1}/2 \cdot 2_{O}}{DateTime}$ Total Cost: $\frac{O_{1}/3_{1}/2_{O}2_{O}}{\frac{O_{1}/3_{1}/2_{O}2_{O}}{\frac{O_{1}}{2}}}$ Total Cost: $\frac{O_{1}/3_{1}/2_{O}2_{O}}{\frac{O_{1}}{2}}$ DateTime $\frac{O_{1}/3_{1}/2_{O}2_{O}}{\frac{O_{1}}{2}}$ P.I.F. $\frac{O_{1}/3_{O}}{2}$ DateTime $\frac{O_{1}/3_{O}}{2}$ DateTime $\frac{O_{1}/3_{O}$	A 2 Coolers	SC - Soil SL - Sludge PT - Paint CK - Caulk AR - Air SL - Sludge REMARKS	647-3311 ZIP:
	01 02 02 04 04	AR - Air AR - Air PARADIGM LAB SANPLE NUMBER	Prove 20 of 40

See additional page for sample conditions.

Page 38 of 40

2072

Chain of Custody Supplement


Client:	Inventum 200501	Completed by:	molifail			
Lab Project ID:	200501	Date:	2/3/2020			
_	Sample Conditio Per NELAC/ELAP 21	n Requirements 0/241/242/243/244				
Condition	VELAC compliance with the sample of Yes	condition requirements upo No	n receipt N/A			
Container Type	×					
Comments						
Transferred to method- compliant container			$\overline{}$			
Headspace (<1 mL) Comments			×			
Preservation Comments	pret, ton		Ston			
Chlorine Absent (<0.10 ppm per test strip) Comments						
Holding Time Comments	ŢŹ					
Temperature Comments	¥ 3°ciul		met			
Compliant Sample Quantity/T Comments		to sub-lab				

Serial_No:02052019:09

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN DE PIRTONV

V Sudan		DATE COLLECTED	Riverview	PROJECT REFERENCE			MONGYAYA	
N Ceal Yard - 01/31/2020 AQ 1 X N Ceal Yard - 01/31/2020 AO 1 X	Fall 2 - 01312020 AQ 1 has Pond - 01/31/2020 AQ 1		Niatrut Codes: AQ Acueus Liquid NQ - Non-Aqueous Liquid WG - Groundwater WW - Westewater SL - Sludge	ATTW: reporting@paradigmenv.com ATTW: accpay@paradigmenv.com	PHONE: 595-547-2530 PIONE:	: NY ZIP' 14808	REPORT TO: INVOICE TO: CLENT Paradigm Environmental CLENT NVOICE TO: ADDRESS: 1701 ske Avenue ADDRESS:	179 Lake Avenue, Rochester, NY 14508 Office (585) 547-2530 Fax (585) 847-3311
		REMARKO	SD - Sovid WP - Wipe PT - Paint CK - Caulk		Email:	Results by 3 PM	LAB PROJECT ID	L Juar 610
		PARADISM LAN BAMPLE HUMMBER	OL - Cil AR - Alt					3946

.